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SUMMARY

The inability to model connections adequately has historically limited the
ability to predict overall system dynamic response. Connections between struc-
tural components are often mechanically complex and difficult to accurately
model analytically. Improved analytical models for .connections are needed to
improve system dynamic predictions. This study explores combining Component
Mode Synthesis methods for coupling structural components with Parameter Iden-
tification procedures for improving the analytical modeling of the connections.
Improvements in the connection stiffness and damping properties are computed in
terms of physical parameters so the physical characteristics of the connections
can be better understood, in addition to providing improved input for the sys-
tem model.

INTRODUCTION

Analytical models of structural systems normally do not normally possess
characteristics which agree completely with those obtained from experiments.
Although there are many possible explanations for the discrepancies, the major
causes often can be attributed to inaccuracies in the data used to create the
analytical model. Parameters such as material and dimensional properties,
which are usually obtained from nominal design specifications, can differ con-
siderably from the true values, thus causing the analytical model to be inaccu-
rate. Structural properties such as damping and connection stiffnesses also
are extremely difficult to predetermine, yet their influence on structural
response predictions is profound.

For large structural systems it is common practice to utilize substructur-
ing methods to create the analytical system model. These methods are used to
construct the model by partitioning the structure into components, and then
lTinking the individual components together with inter-component connections.
The components frequently can be modeled with reasonable accuracy whereas the
connections are difficult, or in many situations impossible to analytically
model. This is especially true when the connections contain significant
amounts of damping.



The objective of the present work is to investigate the feasibility of
determining the characteristics of viscously damped connections from test data
obtained from the complete coupled system. It is desirable to be able to
determine the connection stiffness and damping from tests performed on the com-
plete system so that the difficulties associated with testing individual joints
can be circumvented. The problem with testing individual joints is that often
special test fixtures are required for mounting the joint. Also, conventional
modal tests can not be performed on the joint because joints normally are very
stiff, and thus require static and cyclic loading tests in determining stiff-
ness and damping properties (ref. 1). Furthermore, although several joints may
be nominally identical, their actual properties may vary enough to require that
every joint be tested. When system tests are performed the difficulties asso-
ciated with tests on individual joints are eliminated. Instead of special fix-
tures the system can be tested in its actual operating environment or hung from
flexible suspenders. Conventional modal tests which are much simpler to per-
form than static or cyclic loading tests can generally be used because the sys-
tem modes are in a suitable range. Also, the low frequency modal data contains
information about the joints even though the joints themselves are relatively
stiff.

Several previous studies have addressed the issue of identifying the
stiffness of connections without considering damping. In reference 2 an
attempt was made to identify the stiffness of connections by using a combina-
tion of a weighted least squares parameter identification and substructuring
methods. This work showed that physical stiffness characteristics can be
determined from experimentally obtained frequency data as long as sufficient
test data are available. 1In reference 3 the stiffness characteristics of the
connections between the Centaur G Prime Launch Vehicle and the shuttle orbiter
were modified based on experimentally obtained modal data. The connections
were altered so that a test-verified analytical model would be available for
subsequent loads analysis. The modifications, based on engineering intuition
and judgement were deemed satisfactory when the analytical and experimental
frequency data were in agreement.

Previous studies that have addressed connection damping (refs. 1, and 4
to 8) have focused on identifying damping properties from tests on individual
joints rather than from coupled system tests. In reference 1 a mix of analyti-
cal and experimental component models were combined to characterize the dynam-
ics of a flexible spacecraft. For this study, joint stiffness and damping
were ascertained before the joints were incorporated into the system model.
Data obtained from cyclic loading tests indicated that the joint damping was
primarily viscoelastic, although it was noted that joints in actual space
structures may exhibit nonlinearities and friction damping. Since the system
modal properties computed from the experimentally derived joint models were in
agreement with test results, there was no need to modify the joint characteris-
tics by using the coupled system test data. In reference 4 damping and stiff-
ness characteristics of a representative space truss joint were studied. In
that work results from simplified joint models were compared to results
obtained from a complex model which included dead bands, large deformations,
and friction forces. It was conciuded that simplified models based on linear
springs and viscous dampers could represent the behavior of the more sophisti-
cated joint model. No actual experimental data was used in that study. In
reference 5 nonlinearities in a structural joint were identified by using an
approach termed "force-state mapping". This approach involved simultaneously
measuring the force on a joint along with its position and velocity. From the
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shape of the three dimensional surface generated by plotting force as a func-
tion of displacement and velocity the type and quantitative description of the
joint mechanisms were identified.

In the present paper a general procedure for component coupling is pre-
sented. This procedure accommodates components that have been modeled with
either, finite elements or with modal data which has been obtained from analyt-
ical models or experiment. A parameter identification procedure based on the
weighted least squares method also is introduced. This procedure utilizes sys-
tem test data to find an optimal set of stiffness and viscous damping connec-
tion properties. Finally, two example problems using simulated experimental
data are presented. For these problems both stiffness and damping connection
properties are identified. A Monte-Carlo simulation is run to assess the
effect of variance in the experimental data on the identified properties in
the first problem. The effect of friction damping is evaluated in the second.

COMPONENT COUPLING PROCEDURE

The approach used for developing the coupled system equations of motion
is extrapolated from the procedure of reference 9. In this approach component
models are represented through the use of finite elements or with modal data.
Component modal data may be obtained from experiment, or from a reduced finite
element model. Once the component models are obtained, they are coupled at
physical boundary degrees of freedom through physical connecting elements. In
the present work both stiffness and viscous damping is accommodated in the con-
necting elements. Residual flexibility, which is discussed in reference 9 also
is included.

Consider the system shown in figure 1. This system is comprised of two
components which are coupled by a single connecting element. The damped equa-
tion of motion for the uncoupled system is written as:
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where [M], [C], and [K] are the system mass, damping, and stiffness matri-
ces respectively, {u}, {4}, and {u} are the corresponding accelerations,
velocities, and displacements in terms of physical and/or modal coordinates,
and {x}, {x}, and {x} are the physical accelerations, velocities, and dis-
placements at the connections. (Superscripts refer to component identifica-
tions.) Note that the connecting component is masslass, and the other two
components have no damping. For many systems it is reasonable to assume that
the actual component damping is negligible, and that any significant damping
is isolated in the connections.

Once partitioning between boundary and internal degrees of freedom has
been completed, and displacement compatibility between components has been
implemented, the coupled system equations of mot1on for the damped system may
be derived as follows:
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where the component degrees of freedom {u} are partitioned into internal
{uj} and physical boundary {xy} degrees of freedom. For components modeled
with finite elements, all of the degrees of freedom are physical. For modal
components, the boundary degrees of freedom are physical while the internal,
{uj}, degrees of freedom are represented in terms of modal coordinates.
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When modal data is used to characterize components, physical degrees of
freedom at the component boundary must be derived from the modal data before
the component can be input into equation (2). These degrees of freedom are
obtained by transforming a subset of the modal coordinates into physical coor-
dinates. The equation of motion for an undamped modal component including the
diagonal terms of the residual flexibility matrix associated with the boundary

degrees of freedom is:
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where {q} are modal coordinates, [Ixk] is the identity matrix, [wgk2l fis
the matrix of component frequencies, and k is the number of measured or
retained modes. [bed] is the diagonal matrix of residual flexibilities,
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The matrix bed, containing the component residual flexibility is com-
puted by summing all of the missing modal data (k+1,N) at each of the boundary
degrees of freedom. Experimentally, the entries in the residual flexibility
matrix are obtained by determining the differences between the curve fit and
the experimentally measured frequency response functions (ref. 10). The resid-
ual flexibility is implemented so that flexibility which is not contained in
the truncated set of component modes is included in the component model. The
values of the residual flexibilities at the boundary are required because they
provide information necessary for accurate component coupling and for the crea-
tion of a precise system model. Only the diagonal terms in the matrix are used
here because it has been found that the off-diagonal terms, which relate the
cross coupling between boundary degrees of freedom, have a negligible effect on
the fidelity of the model (ref. 9).
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Using the above transformation and equation 3, the component equations of
motion in terms of modal and physical boundary coordinates are derived as:
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After the component equations are transformed into the coordinate system
used in equation (5), the component can then be incorporated into the system
equations in the same manner as are the finite element components.

Once the system equations of motion are constructed, they can be used to
predict the system frequencies and mode shapes. This modal data is then used
in conjunction with the experimentally measured modal parameters to identify
the connection properties. Because the system is damped, the frequencies will
be complex; the real part corresponding to the modal damping and the imaginary
part to the modal frequency. The mode shapes also will be complex but for most
damped systems (including the present research) the imaginary part can be
disregarded.

PARAMETER IDENTIFICATION PROCEDURE

Several methods are available for parameter identification (ref. 11). The
methods which incorporate optimization strategies can be classified into three
groups; least squares, weighted least squares, and Bayesian estimation. With
the least squares method the set of parameters which minimizes the difference
between the measured and predicted response is computed. The weighted least
squares method is similar except that a "weight," corresponding to the relative
confidence in the measured data, is incorporated. The Bayesian method permits
specification of the randomness of the parameters that are being computed as
well as the confidence in the measured data. Since in practice the randomness
of the connection parameters may be difficult to quantify the Bayesian method
normally is not useful. The weighted least squares method will be used in the
present study because it is feasible and useful to quantify the confidence lev-
els in the measured data.

Assuming that the component characterizations are accurate, and that an
appropriate set of component modes has been used to represent the overall sys-
tem response, a search can be initiated for a set of connection parameters
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which better predicts the system frequencies and mode shapes. The assumption
that the component representation is accurate may require that experimental
verification be performed on the component models before they are used in the
system characterization. Although this approach may require additional effort
in that verified component models are required, it greatly simplifies the
parameter identification by limiting the location of possible inaccuracies to
the connections. The requirement that an appropriate set of component modes
be used normally can be met by including the lower modes, and by utilizing a
number of degrees of freedom in the system model that is at least twice the
number of modes of interest (a mode equates to 1° of freedom). This require-
ment is comparable to the modeling guidelines used for conventional finite ele-
ments. By including residual flexibilities, the requirement can be relaxed.

The parameter identification (PID) discussed in reference 2 is used here
to find an improved set of connection parameters that better predict the meas-
ured system data. The difference between this work and the work in reference 2
is that in this work modal damping is included in the identification.

The improved set of connection parameters are computed iteratively from:
{r} = {r}gst + C(LSITCWILSD-TISITIWIC{E)} - {c}gs) (6)

where {r} 1is the vector of improved connection parameters (physical stiffness
and damping coefficients), {c}Mygs and {c}ggT are the measured and computed
system modal parameters, [W] is a weighting matrix for the measured data, and
[SI s a sensitivity matrix containing the partial derivatives, d{c}/d{r}.

The vector of measurements, {c}, can contain both complex frequency (fre-
quency and damping), and/or mode shape data. For the mode shape data it is
sensible to use a measure of the overall fit between the predicted and experi-
mental mode shape instead of using values of the mode shapes at individual
locations. A logical measure of the overall fit is the least squares differ-
ence between mode shape data points. The Mode Shape Correlation Coefficient
(ref. 12) provides this kind of measure. The Mode Shape Correlation Coeffi-
cient is advantageous because it provides a quantitative measure of the fit
between the entire analytical and experimental mode shape, and furthermore, it
does not require the experimental and computed mode shapes to be normalized in
the same manner.

The weighting matrix, [Wl, is used for specifying the confidence levels
as well as for scaling the system modal parameters. For example, to specify
that the modal damping has equal importance to the frequency, a Targer weight
may need to be placed on the damping parameter. This is due to the fact that
the order of magnitude of modal damping is less than that of frequency. Also,
a higher weight may be warranted for parameters that are more significant, or
that have been measured with greater accuracy.

The sensitivity matrix, [S], although relatively laborious, is straight-
forward to compute. In the present study the sensitivity matrix is computed
by perturbing the system with small changes in the connection parameters, {r},
and then recording the resulting changes in the system modal parameters,
{c}gsT- A new sensitivity matrix is computed for each iteration of
equation (6).



SAMPLE PROBLEM ONE

The first sample problem is presented to demonstrate the parameter identi-
fication procedures and to assess the feasibility of identifying physical con-
nection properties from coupled system modal data. For this problem a finite
element model was used to generate simulated experimental data. The model
(fig. 2) consists of three planar elastic beams connected at their ends with
revolute (pinned) connections. Each connection is attached to ground by a lin-
ear, translational, spring, and viscous damper. The properties of the connec-
tions are varied by changing the value of 'm' and 'n' which are shown in the
figure. Each of the beam components is discretized into five beam elements
with the beam mass lumped at the ends of the elements. The complex eigenvalue
extraction capabilities (Sol 28) of MSC NASTRAN (ref. 13) were used to compute
the simulated experimental frequencies, modal damping, and mode shapes for the
coupled system. NASTRAN also was used for computing the free-free modes for
the individual beam components. These modes are used for creating the modal
components for the analytical model. Four modes, two rigid body and two elas-
tic, were used for the component representations.

Figure 3 shows the effect that the grounded springs have on the system's
undamped resonant frequencies. The results in this figure are generated from
the experimental model. For n = 0, the first four modes resemble rigid body
modes, reflecting the softness of the springs. As 'n' is increased the sys-
tem becomes stiffer, the frequencies increase, and the system behaves more 1like
a series of simply supported beams. For 'n' greater than eight, the grounded
springs act as rigid supports. In the subsequent parameter identification, a
range of 'n' values is investigated so that a performance assessment can be
made for both very flexible, and relatively rigid, connections.

In figure 4, a comparison is made between resonant frequencies from the
modal model (residual flexibilities not included) and those from the experimen-
tal model. Since four modes were used to represent each component, and there
are three components, the system modal model had twelve degrees of freedom.
Based on this number of degrees of freedom it was expected that the first four
or five modes could be predicted with reasonable accuracy. For low 'n' values
there is very good agreement between the experimental and component mode models
for the first five modes. This is expected since the component mode model is
generated from free-free component modes. For low 'n', each component behaves
as if it were freely supported. For larger 'n' values the system behaves like
a series of simply supported beams, creating greater disagreement between the
frequencies predicted by the experimental and modal models. This also is
expected because the truncated component mode representation is better suited
for predicting rigid body type motions, and has a more difficult time with the
bending type behavior of the simply supported components. The mismatch for
high 'n' values is still moderate, especially for the first three system reso-
nant frequencies. Obviously, when more or less than four component modes are
used the respective mismatch decreases and increases. In general, the modal
model utilizing four component modes produced very reasonable results. When
residual flexibility was included there almost was perfect agreement over the
entire range of 'n' values.

In figure 5, the differences between the experimental and identified con-
nection stiffnesses are plotted as a function of 'n' value. The connection



values were identified by minimizing the differences between the first seven
system resonant frequencies. Mode shape data was not utilized. It was prefer-
able not to have to use any mode shape data because shape data is considerably
more difficult to measure experimentally than are frequencies. To initiate the
parameter identification (eq. (6)), initial estimates are required for the con-
nection parameters. In creating the data shown in this figure, zero stiffness
values were used for the initial estimates of the connection parameters. When
the connection properties are better known, the initial estimates can be
improved, and convergence is accelerated.

The strongest agreement between experiment and computed connection parame-
ters is at 'n' = 4. This is in contrast to the highest frequency match (fig. 4)
which was at 'n' = 0. Even at 'n' = 0, where the difference is as large as
thirty percent, the match is still fairly good considering the prevalent diffi-
culties associated with determining connection properties. In many situations
it is adequate merely to be able to determine the order of magnitude of the
connection properties. For 'n' = 6, converged parameters could not be computed
without including residual flexibilities, atthough the order of magnitude of
the connection properties was determined correctly. With the inclusion of
residuals, the connection stiffnesses were computed to within forty percent
accuracy.

There are two reasons why disparities between the identified and experi-
mental connection values may occur, even though the analytical model accurately
predicts the system frequencies (e.g., at 'n' = 0,2,4). The first reason is
that when the frequencies are relatively insensitive to the connection stiff-
nesses, a high degree of precision in the experimental data is required for
accurate identification. In practice, this required degree of precision may
not be attainable and only an order of magnitude estimate of the connection
properties may be realized. The second explanation involves the existence of
multiple solutions. For many systems, including the one presented in this
paper, more than one set of connection properties exists which satisfies the
objective of eliminating the differences between the measured and predicted
modal parameters. When this is the case, the resulting set of connection prop-
erties is dependent on the initial estimates for the connections and on the
step size used for computing the sensitivity matrix. Normally, the number of
solutions can be minimized by utilizing additional frequencies and/or mode
shapes in the identification. The number of possible solutions and the
required quantity of experimental data can be determined beforehand by perform-
ing simulation studies with varying step sizes and initial estimates for the
connection properties.

The data in figures 6(a) and (b) were created to assess the effect of
damping on the identification of connection properties. For these figures, the
connection stiffnesses were held constant at 'n' = 4, and the damping was var-
ied from 'm' = 0 to 1.4 (critical damping is near 'm' = 1.6). In figure 6(a)
the flatness of the curves demonstrate the insensitivity of the stiffness com-
putations to damping. Even for large damping, 'm' = 1.4, the connection stiff-
nesses are computed accurately. In figure 6(b) the effect of damping on the
identified connection damping is displayed. Similar to the stiffness results,
the identified damping also is fairly insensitive to the level of the damping.
In general, when the level of damping is low, and hence frequency is unaffected
by damping, there will not be any coupling between damping and stiffness, and
the connection stiffness and damping properties may be identified independently.



A Monte Carlo simulation was used to assess the accuracy of the parameter
identification for various degrees of experimental error. Normally, the level
of experimental error in frequency is small, while the error in damping and
mode shapes is relatively large. Based on this assumption, the coefficient of
variation in the frequency measurements was set at 1 percent and the damping
coefficient of variation was varied from 1 to 15 percent. For simplicity, mode
shape data was not utilized. Simulated data was generated by making forty runs
at 'n' =4, 'm' = 1.2, and using a random number generator to select the exper-
imental modal frequencies and damping (normal distributions were assumed).
Plots displaying the probability of achieving a precision level for the various
degrees of measurement coefficient of variation are shown in figures 7(a) and
(b). In these figures it is shown that as the coefficient of variation in the
measured data increases, the probability of achieving a given level of preci-
sion decreases. For example, the probability of identifying the damping to
within 20 percent of the actual damping is nearly 80 percent for a damping
coefficient of variation of 1 percent, while it is less than 40 percent for a
coefficient of variation of 15 percent. Obviously, as the required precision
level is relaxed, the probability of reaching that level is increased.

From figure 7(b) it is evident that regardless of the damping coefficient
of variation, the identified stiffness properties are reasonably precise. For
example, the probability of attaining a 30 percent precision is very good
(greater than 80 percent) for all three levels of damping coefficient of varia-
tion. These results were expected since for the mean damping used for the sim-
ulation ('m' = 1.2) the stiffness is fairly independent of damping. It should
be noted that the results from the Monte Carlo simulation are problem dependent
and can only be used for providing insight into the degree of accuracy that
might be expected for other problems.

SAMPLE PROBLEM TWO

The connections in many structural systems contain nonlinearities such as
friction or gaps. For multi-degree of freedom systems it is virtually impossi-
ble to identify and characterize all of the complexities that may exist in con-
nections. Often, a simplifying assumption is made that the connection damping
can be adequately described by linear viscous dampers even though other types
of damping exist in the connection. MWith this assumption the identification
process and subsequent analysis are greatly simplified. In the second sample
problem the effects of the viscous damping assumption are assessed by adding
friction damping into the system. First, the effect of friction damping on the
identified viscous damping connection properties is determined. Subsequently,
a comparison is made between the actual response of the system with friction
damping and the response of the identified system with the friction damping
approximated by viscous damping.

The structure utilized for the second sample problem is identical to the
first except that friction dampers have been added at each of the connection
locations (fig. 8). The friction dampers at each of the four connections were
identical. The viscous dampers and grounded springs which were used in the
first sample problem also were used here. The parameters for these elements
(see fig. 2) were fixed at m=1 and n = 4.



MSC/NASTRAN Solution 99 was used to compute the modal damping for the cou-
pled system. The damping was computed by exciting the system and then allow-
ing it to decay (fig. 9). The rate of free decay then was used to compute an
equivalent modal damping for each of the first seven modes at different levels
of friction damping. To obtain the free decay response each mode was individu-
ally excited by applying a distributed sinusoidal load at the modal frequency
with the same distribution as the mode shape. The magnitude of the sinusoidal
load was set so that the resulting displacements were on the order of the sys-
tem span/100. The excitation frequency and distribution was determined by
assuming that the modal frequencies and mode shapes would be unchanged from the
system without friction damping.

Equivalent viscous damping ratios were computed for four levels of fric-
tion damping. The friction ratio was defined as the ratio of the friction
force at each of the four connection locations to the maximum value of the dis-
tributed sinusoidal excitation. Damping ratios were computed at friction
ratios of r =0.0, r = 0.02, r = 0.10, and r = 0.50. The resulting modal
damping values are given in table I. As expected, the equivalent modal damp-
ing increases with an increase in friction force. The damping ratios from this
table next were used in the parameter identification to compute equivalent vis-
cous dampers. The identified viscous dampers are given in table II. HWithout
friction damping, r = 0.00, the identified dampers are very close in value to
the actual dampers. MWhen friction is present, the identified dampers do not
appear to follow any pattern, but they do enable the predicted frequencies and
modal damping to match the experimental data closely.

The performance of the identified models was assessed by comparing tran-
sient responses of the identified models to those from the experimental models
at each of the four levels of friction damping. The models were excited by
applying a step function input load at the center of the system. The effect of
the step input is to excite all of the system modes, with a greater emphasis on
the lower modes. The resulting system response, shown in figure 10, reaches a
peak displacement just after the step load is applied and then decays while
oscillating about a steady state displacement. The responses from the identi-
fied and experimental models were evaluated by comparing peak response, set-
tling time, and RMS error (see table III). At all four friction levels there
was very little error in peak response (e.g., only 2 percent error at r = 0.50).
The settling time error, which is defined as the error in time to reach
10 percent of the steady state displacement, increased considerably from the
lower to higher levels of friction damping. For example, at r = 0.50 the time
it took for the identified model to reach steady state displacement was twice
that of the experimental model (122 percent error).

The Fourier transforms of the displacement responses were computed for
r =0.10 and r = 0.50 (figs. 11(a) and (b)). To clarify these transforms, the
steady state displacements were subtracted from the displacement responses.
From the Fourier transforms it is seen that most of the discrepancy between the
experimental and identified model responses can be attributed to the difference
in contribution of the first mode. For both r = 0.10 and r = 0.50 transforms
there is minimal difference, except for the first mode where the difference is
extreme.
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In figure 12, the amplitude and settling time errors are compared at three
magnitudes of input load while the friction force was held constant at r = 0.10.
Since the friction damping is amplitude dependent (inversely proportional to
displacement and frequency), it was expected that the identified model would
accurately match the experimental model response only at the same excitation
levels and distributions as were used to compute the equivalent viscous damping
ratios. Considering that the equivalent viscous dampers were derived by using
sinusoidal excitation, and the responses in the figure are the result of a step
input excitation, the identified model does a fairly reasonable job of predict-
ing the experimental response for a broad range of excitation levels and distri-
butions. As expected, the identified model over-estimates the system damping at
high ampiitudes. This is because the equivalent viscous damping is inversely
proportional to amplitude and therefore would have to be decreased for higher
amplitude response.

SUMMARY AND CONCLUSIONS

A method for coupling multi-component systems, and for identifying connec-
tion stiffness and damping characteristics was developed and verified with sim-
ulated data. In the first sample problem component connection properties were
determined for a three component planar beam model. From this analysis it was
found that properties could be accurately identified for a broad range of con-
nection stiffnesses and damping using relatively minimal measured data. The
connection properties were identified using frequency data alone. Mode shape
data was not required. By performing a Monte-Carlo simulation it was determined
that connection damping and stiffness can be identified even in the presence
of experimental error.

In the second sample problem equivalent viscous connection damping was
identified for a model actually having friction and viscous damping. A compar-
ison between the experimental and identified mode! showed that for particular
ranges of input excitation the identified model could reliably predict peak
response and settling time. However, at high levels of friction damping, the
identified model did not perform as well. Since many systems include connec-
tions with nonlinearities, it is important that unrealistic predictions con-
cerning the in-service response of the system are not made. Instead, the
extent of any nonlinearity should be determined by inspection of the measured
data, and then the subsequent effect of any identified nonlinearity on system
vresponse should be explored.
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TABLE I. - EQUIVALENT VISCOUS DAMPING RATIOS, € TABLE II. - IDENTIFIED EQUIVALENT
VISCOUS DAMPERS

Mode r=20 r =0.02 r=20.10 r = 0.50
Gy C2 C3 Cq
94.9 Hz 0.024 0.031 0.048 0.082
119 .027 .035 .051 .100 r = 0.003 9.4 21 27 37
145 .031 .032 .042 .080 r=0.02 20.6 7.7 23.3 | 43.6
208 .040 .036 .045 110 r=20.10 26.2 7.7 45.3 34.6
307 .040 .041 .054 .100 r =0.50 25.1 52 54 53
408 .032 .03% .037 .080
484 .060 .063 .067 .140 dActual values are Cy = 10, Cp = 20,
C3 = 30, and C4 = AO.

TABLE IIT. - EVALUATION OF IDENTIFIED MODELS

Peak amplitude | Peak amplitude | Settling* RMS
(experimental) error, time error, error
percent percent
r = 0.00 0.755 0 0 0.00
r = 0.02 .754 2 13 .07
ro9.10 .750 3 44 .1
r = 0.50 IN 2 122 .24

*Settling time = time to reach +10 percent of steady state
displacement.

HYSICAL AND/OR MODAL DEGREES OF FREEDOM

= Pl
= PHYSICAL DEGREES OF FREEDOM
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X

¢ 1_// \\—xc xI1
x§. x1; 1 *c

FIGURE 1. - THREE COMPONENT SYSTEM.

13



FREQUENCY, RAD/SEC

DIFFERENCE, PERCENT

—PINNED CONNECTION

].AL.‘ // (TYPICAL)
/

~
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FIGURE 2. - THREE COMPONENT COUPLED SYSTEM (EI = 10°, P =0.10, AL = 1.0).
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FIGURE 10. - COMPARISON BETWEEN EXPERIMENTAL AND IDENTIFIED MODELS’ TRANSIENT RESPONSE.
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FIGURE 11. - FOURIER TRANSFORM OF DISPLACEMENT RESPONSE.
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FIGURE 12. - STEP INPUT MAGNITUDE EFFECTS ON
AMPLITUDE AND SETTLING TIME ERRORS, r = 0.10.
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